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Gel, self-similarity and universality in the discrete 
Smoluchowski equation with finite mass 

Y Gabellini and J-L Meunier 
Inslilul Non Lineaire de Nicct, UnivenilC d e  Nice-Sophia Antipolis, Pam V a l m ,  06034 
Nice Cedex. France 

Received I1  September 1991, in final form 7 February 1992 

AbslmcL We appmximalely solve the Smoluehawski equalion (discrete wnion), for 
gelling and non.gelling systems with fmile mass and arbitrary initial mndilionr for various 
kemcls (additive and mulliplicativc). We obtain ihat the approximate scaling form does 
not depend on the details of the kernel in contrast wilh already known resulls Numerical 
simulalions are presented which show that the predicted form is nl id  mer a large range 
of lhe scaling variable n/s.  l%e critical erponenl related lo the power law dependence 
of the dirtribulion is shown lo scale rapidly. even with low masses. ?his could clan& the 
recent dilliculties of the standard lheory with bath experiments and numerical dculalions. 

1. Introduction 

During recent years, much work has been done by various authors on the study of 
the Smoluchowski equation (SE), which may govern the irreversible aggregation of 
objects 11-lo], whatcver thcse objects arc: 

(1.1) 

where M(n,l) is the number of aggregates of size n at time 1 in the experiment. We 
are interested here in finite systems for which N( n ,  1) = 0 for n greater than some 
n,.,, and K ( i , j )  is, in Eencral, a homogeneous function of its arguments of degree 
X r X (  ai, a j )  = a h  I < (  i,;). In that case, thc total mass 

Gcser;ed: = n, =,is Smo!i;c:,owski eqi;a;ian has ;he peci;:ia;kj: tc be nonfinear 
and non-local and to exhibit quite ditferent behaviour, according to the values of A. 

In general, the rcsolution scheme used is as follows. The continuous associated 
equation is constructed and then solved, somehow or other, in the high n limit [lo]. 
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This resolution scheme gives some predictions for various experimental quantities 
such as the critical exponent 7, which describes the dependence of the distribution W 
or of its density N for high n values [9]: 

Y Gubellini and J-L Meunier 

N ( n , t )  E n-' N = W / M  (1.3) 
and suggests that the density presents a self-similar behaviour [&lo] 

Let U$ notice that, within this scheme, the  case of gelling systems (A > 1) is not taken 
into a m u n t  when the size of the system is finite. 

1.1. The canonical cases 

Up to now, three exact solutions of the problem are known: the Brownian case; and 
the Ge l4  and the Gel-1 cases, that we call standard or canonical. In these cases, the 
degree of homogeneity A of the Smoluchowski kernels is respectively 0, 1 and 2, and 
these kernels have very differcnt structures: 

Ii(i,j) = k in the first case 

= k- in the second case (Gel-0) (1.5) 2 
= kij in the third one (Gel-1) 

with IC a positive constant. 
These problems can be solved by using the generating function-given later-and 

solving some partial differential equations [6, 111. For the three cases, one finds an 
asymptotic self-similar solution, which has the same shape and can be described by 
three dynamical exponents which are in some way related 

*,here c is B so:Ea!izatios P"nst2nt and s(2) 3 the sc.!lsg par.meter, s%%" 
related to the mean size of the clusters (see further), which behaves as 

s ( t )  o( 1' for x < 1 

ci (1 ,  - t ) i '  for x > 1 

ci e' cor x = 1. 

The exponents 0 ,  T and z or 2' have bccn calculated and are summarized in table 1. 

Thble 1. Values ol llie various orponenls lor h e  three slandard examples. 

Brown Gel-0 Gel-1 

B i  2 2.5 
r O  1.5 2.5 
I 1  m 
I' - - - 2  

- 
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1.2. The homogeneous kernels 

Our purpose in this paper is to solve, at least approximately, two models with dif- 
ferent structures with a continuous parameter A, i.e. the additive model and the 
multiplicative one, 

K ( i , j )  = k(ij)" with w = X / 2  

= k ( i x  + j A ) / 2  

(multiplicative case) 
(1.8) 

(additive case) 

for a wide range of A: -1 < X < 2 for the multiplicative case and -1 < X < 1 
for the additive one. These models have been studied by various authors [2-IO] and 
interpolate between the canonical examples. In particular Ernst and van Dongen [& 
101, hereafter referred to as Em, have studied the two models in the limits n/s  - 0 
and n/s - 00, and found that in these limits the models present a different power 
law behaviour. As a matter of fact, the  two models belong to two different universality 
classes in their classification. The multiplicative model belongs to class I (0 < X < 
2, j~ > 0) or 111 ( p  < 0), where p is the exponent governing the small i / j  limit of 
K ( i , j ) .  For X > 0, the exponent T of the n / s  - 0 behaviour is predicted by these 
authors to be given by the following relation: 

r = l + X .  (1.9) 

The additive model, Cor its part, belongs to class I1 ( p  = 0) and has been shown IO 
exhibit different features. In particular, the T exponent cannot be directly calculated 
from the continuous equation, but has been shown to obey some rigorous bounds 
which can be computed from IS]. 

The n / s  -+ M exponent, T' ,  is found to be class independent and equal to X 
[lo]. On the other hand, in the case of gel Ibr multiplicative models, the EvD analysis 
is developed for conslant flu and gives the following result: T = (3 + X)/2. For 
the T and T' exponents, the situation is summarized in figure 1 for 0 6 X < 2. The 
hatched area represents the EvD bounds Cor the additive model n / s  - 0 exponent. 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
0.0 0.4 0.8 1.2 1.6 2.0 

Figure 1. lhe 7 and EVD [8-10] 7' expanenis as a funclion of A; the halched area 
refers lo the additive modcl. 
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However, the situation is still not clear from the numerical or experimental p i n t  
of new [12-151. Various authors have remarked that the scaling exponent T ,  extracted 
from numerical calculations, presents some discrepancies with the predictions for both 
models. In particular, Kang el a1 1121 have shown that the T exponent varies smoothly 
with time and does not agree with the predicted asymptotic behaviour in intermediate 
time. Moreover, Martin [13] has shown that the asymptotic predictions of Ernst and 
van Dongen were not completely in agreement with the experimental results on 
mlloidal silica. 

1.3. The resolution scheme 

In this paper, we present a new approximate resolution scheme for the discrete Smolu- 
chowski equation which is shown to lead to universal results for finite values of the 
ratio n / s  for X values less than one. 

The techniques of the resolution are based first on the use of C(z, t ) ,  the gen- 
erating function of the distribution (discrete Laplace transform of N )  defined as 

the pth derivative of which, with respect to z, taken at I = 0, is denoted by g p ( t )  = 
G(P)(O,t). Notice that the g, are the momcnts of the distribution N :  

g , ( 1 )  = n P N ( n , t )  = 3. (1.11) 
“ = I  

The second tcchnical point is to make use of a somewhat curious derivative that 
we called ‘continuous’ and which interpolates between the usual ones for sufficiently 
well behaving functions (see the appendix). These types of operators are h o w n  in 
mathematics, for example in distribution theory [18], but, to our knowledge, this is 
one of the first times that a physical application for these techniques has been found. 
See also [19] which dcvelops a different but related operator. 

The Laplace transform of the Smoluchowski equation leads to a partial (contin- 
uous) differential equation in G the exact solutions of which are only known in the 
three canonical cases. 

The general equations will be approximately solved with the help of a specific 
form for the pth z derivative of G, G(P)(z, 1 )  which interpolates between the exact 
solutions of the canonical models (Brown, Gel-0 and Gel-1) [ll]: 

(1.12) 

where C, Y and @ are real parameters. The approximate resolution of the model 
equations, which is developed in sections 2 and 3, gives the value of the parameters. 

This leads to the multiplicity distribution N ,  by performing an inverse discrete 
Laplace transform: 
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When s > 1 and n / s  < 1 one obtains the self-similar solution for N :  

(1.14) 

where r is the gamma factorial function and 

e = p +  1 + F =  1 - 0 .  (1.15) 

The initial conditions appear in the s( t )  function and depend on the first few mo- 
ments of N .  Notice that the inverse Laplace transform can only be performed if 
0 > 0, so that the integral in formula (1.13) converges when TZ -+ 00. 

1.4. lhe results 

We obtain that the two models-additive and multiplicative-give roughly the Same 
exponent for s / n  for a given homogeneity degree X between, say -1 and 1, an 
exponent which is different from the usual T discussed earlier, and, in particular, 
violates the EVD bounds in the additive case. 

This result is in good agreement with our numerical simulations (a Monte Carlo 
simulation of the irreversible aggregation process). 

As it is essentially valid in the region where 12 is of the Same order of magnitude 
as s, say s/10 < n $ s, we think that  our exponent must be discriminated from the 
EVD one which is valid in another part or the phase space (0 << n s), and we will 
name it T. (see equations (1.14) and (1.15)). 

Our feeling is that the universality we have found in this problem is perhaps more 
general and does not depend on the details of the Smoluchowski equation. We even 
guess that it does not depend on the equation itself, which can be considered more 
as an example of the phenomenon rather than as a fundamental equation. 

In fact, the aggregation phenomenon provides some sort of dynamical renor- 
malization group: the irreversible aggregation of clusters may be seen as formally 
equivaient to the spin biock grouping in a rcai space renormalization process ji6, iij 
and it is not so surprising that some universality holds in this field, as long as the 
process is not close to its limits (1 << s << M ) .  

Our paper is organized as follow: in section 2 we will study the multiplicative 
model, while section 3 is devoted to the additive one. In section 4 we discuss the 
validity range of the results and comment about some approximations. Numerical 
ie.ruiis .wiii 
section 6. The continuous derivatives are presented in appendix. 

piesi.niei; in sea;oii 5 an& aeei soir,e dkeiisjiaii, .~~ .*i)! mni;iide hi 

2. The multiplicative model 

In this section, we present our rcsolution of the problem for multiplicative model 
( K ( i , j )  = k(ij)”’, with w = A/?)  in the X range between -1  and 2. In that case, 
the Smoluchowski equation, after rescaling of the time ( t  - M k t ) ,  reads: 
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This leads to the following equation for the generating function (equation (1.10)) 
which, using equation (Ah) of the appendix, gives 

Y Cabellini and J-L Merrnier 

where = a,G (continuous derivative in the z variable). 
Now, we take the first z derivatives of equation (2.2): 

G ( ' ) ( z , t )  = G("+')(z,t)(G"(z,t) - Gu(O,t)] 

G( ' ) (z , t )  = G(ut2)(z,t)[Gw(z,t)- Cw(O,t)]+ [G(wtl)(z,t)] 
2 

( z , t j ( Z j  
( y y z , t j  :,-\ = G',"Io,(z,*)[G."(z,tj _I.,  3%. - G W ( o , t j j  +3@'?:(z, i)G!"+?) 

G(4)(z,t) = G(w+4)(z,tj[G~(z,t) - C W ( O , f ) ]  

+4G(w+')(z,1)G("+3)(z,1) + 3  [G(W+")(z, t ) ]2 

which, at z = 0, give 

go = - g i p  

g1 = 0 

8 2  = L + l  

g3 = 39,+1gw+2 

64 = 4gw+1gw+3 + 3gwi.2.  

2 

a 

We now first concentrate our attention on the X < 0 case. 

(2.4) 

2.1. X < 0 

As it has been previously announced in the introduction, we use the specific form for 
G: 

C G(z,t) = 
s"(  1 - s z ) P  

and adjust the free parameters in order to Cuifii reiations (2.4). it k first easy to 
observe that mass conservation implies C = 1 / p  and U = 1. Then, using formula 
(k7) to calculate the successive derivatives of G (continuous or ordinary), we obtain 
that the three first relations of (2.4) are fulfilled for 

1 - 2X + J1 - 4X + 3X2  
P =  2 
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The parameter to, which will also appear in all subsequent results for s in sec- 
tions 2 and 3, is f ied by the initial conditions on the multiplicities N(n,O). 

The fourth relation is not satisfied, which means that the solution (2.5) is not 
exact, up to a third degree term. We will come back to this point later on. Now, 
using G and equations (1.14) and (1.1.5), one can recover the self-similar solution: 

with 

1 + 2 A  - \ /1-4A + 2 x 2  
2 

r ’ = l - P =  

Notice that in this case T* is negative and one recoven the bell-shaped distribution 
predicted by Kolb [7]. Moreover, one can remark that the dispersion U = (2-E*)1/z 
(see equation (1.11)) of the distribution is proportional to its mean value 5 and that 
the measurement of their ratio gives a direct measure for r*: 

22. O < X < l  

As one can observe from formula (2.6), the 0 coefficient is no longer real if A is 
greater than zz 0.3 and the approximate solution we use loses its physical meaning; 
the self-similar solution when X E [ O , l ]  has thus to be calculated with the help of 
the first z derivative for G, in the set of equations (2.3). %king into account the 
m a s  conservation, one obtains for G(’1, 

1 
G(l)(*, t )  = (1 - S z y ’  (2.9) 

Using the first, second and third moment of (2.4) one gets 

(2.10) 

with 

The r* exponcnt of the theory is now 

T I  = 2 - p = ;A (2.11) 

Notice that the z exponcnt is the same as before but that r* is now linear in A. 
Notice also that, while we rccover thc standard values of the 0 and z exponents, we 
do not recover the r value for the small n behaviour exponent, which, in this case, 
is T = 1 + A; let us rcmark that our r* is, in a way, between the n / s  - 0 exponent 
and the n / s  -+ M one, r‘ (r‘ = A). 



3690 

23. The gelling case: X >, 1 

Because in (2.10) the p exponent becomes negative for X > 1.33, G(’) loses its good 
long-range behaviour in z and one has to work with the second derivative of G in 
equations (2.3). Using the second, third and fourth moments in equation (2.4) one 
finds the following approximate solution: 

Y Gnbellini und J-L Meiinio 

with 

9 - 4 X +  d 2 X 2  - 8X t 9  
4 P =  

3 X + ? P - G  
2 P  

v =  (2.13) 

with 

which leads to a non-conserving mass self-similar solution whose T*  exponent is 

3 + 4X - J 2 X 2 - 8 X  + 9  

4 
T’ = 3 - P = (2.14) 

3. The additive model 

Proceeding exactly in the same way as in the multiplicative case, but using K ( i , j )  = 
k(iA + jx ) /2 ,  the additive kernel, one has for G ( z , t )  the following equation: 

2 G ( z ,  1) = G ( ” ( z ,  t )G(z ,  t )  - G(A)(O, t ) C ( z ,  t )  - G(”(z, f )G(O, t )  (3.1) 

from which we can extract the first moment equations: 

26, = -g,\g, 

2g1 = 0 

24: = 3 L , > 4 :  + 3gh+lg’ 

2 j 2  = S’h+lQl 

2b4 = 4YA+3g, + 49h+1.93  f G S A + ~ S ~  

and derive the self-similar form for the model in our three regions of interest with 
the same approach as in section 2. 
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3.1. X g 0 

We take for C(s,f) 

1 G ( r ,  t )  = 
pS(1- s r ) P  (3.3) 

and use the first three moments of the distribution to constraint the parameters. This 
procedure gives 

(3.4) 

with 

3.2. O < X < 1  

Fa X in this range the preceding form is no longer integrable, thus, as in the 
multiplicative casc, wc usc the first derivative of G: 

(3.5) 
1 G ( l ) ( r , t )  = 

( 1  - SZ)@ 

with 

which gives T* = 2 - p = :A, Notice that in this X range, the T* exponent is exactly 
the same as in the multiplicative case which exhibits the approximate universality we 
propose in this X range. Scc also the remark at the end of section 22 

3.3. The gelling case: X >, 1 

Now using g2, g3 and g.,, one finds 
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with 

Y Gabellini nnd J-L Merinier 

3 + ,//24A2 - 9 G X  + 81 
4 P =  

whkh ieads to a non-conserving mass self-similar solution whose T* exponent is 

9 - &4Xz - 9GX + 81 
4 

T* = 3 - p =  (3.9) 

This exponent rapidly loses any meaning due to the fact that 0 acquires an imaginary 
part for X zz 1.2. As a matter of fact, in this region, the additive model is not sup- 
posed to even have a sclf-similar solution [lo]. This lack of universality is numerically 
studied in section 5. We show in figure 2 (and in figure 5 together with the numerical 
results) T* as a function of X for multiplicative and additive cases. 

4. Discussion 

4.1. The validity range of rhe nterhod 

Let us first notice that our method is by no mean unique. In fact, one could have 
taken another analytical form for G and proceeded in the Same way. We have chosen 
the form (1.12) because it is the simplest one which gives back the canonical results 
when X = 0, 1 or 2. 

3 
I 

A 

Figure I The 7‘ exponent as a funclion of A for the additive (chain NWC) and 
multiplicativc model (dotted awe) .  
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Given that, we have now to discuss for which kinematical range in s and n the 
ansatz we use gives an answer close to the exact one. 

In order to be specific we restrict this discussion to the intermediate X range 
(0 < A < 1 111 the multiplicative case. The difference between the approximate 
solution, G(' 1 '  and the exact self-similar one can be written as follows. 

( s x ) 3  + 0(sx)4. ( 4 4  (1) Gexact(z, s) II G(')(z, s) + t- 
3! 

The resolution of the last equation of (2.4) gives e, thanks to the nice properties 
of continous derivatives (A.8): 

E = w(w - 1)0/3. (4.2) 
9 .k  q-zmity k small i!! !he whole x nag- P X d  Lq eqsa! tc & *,hPS A = I .  C.b 

is a good test for the quality of the chosen ansatz. Notice that e = 0 for X = 0 or 2 
which exhibits the fact that our ansatz is exact in these cases. Furthermore this value 
of E gives that the wrrective term is negligible (on the imaginary axis) compared with 
IC(')l provided IzI < zo Y 4/s .  

Now, the range in n where the approximate formula is valid is given by the 

principle gives that the corrcction to the approximate density is negligible if n < 
no = l /xo.  The worst case is obtained for w = 0.26 which leads to no II s/3.6. 
This procedure gives an upper bound for this limit. Thus, from the theoretical point 
of view, our results are, at least, essentially valid for sizes greater than, say, s / 3 .  
However, as it will be shown in the numerical study, its validity range goes down 
much lower, and covers completely the size range when s is not too big. This will be 
numerically observed in section 5. 

On the other hand, a quick examination of formula (1.13) shows that n cannot 
be too large compared with s, due to the importance of non-asymptotic terms in the 
integral. In short, the validity range of our method covers n sizes between s/k and 
s, and k > 3 can be numerically estimated. 

4.2. The small n / s  behuviour 
Now, it is perhaps interesting to notice that if, in equations ( 2 4 ,  near I = 0, one 
makes the following approximation to the first order in z: 

-..-1.-.- ctiiwtiwe nf -. the -..-.I- i n v ~ r w  hp!ace rransform: the  me argEp.ent ic the .fice.r&$.Q 

G("')(z, t)  - G("')(O,t) II zG(W+')(z, t )  (4.3) 
Q"p QbQi"S the fQ!!owi"g $o,lJa~ion in the me!tip!i&ve care 

This equation is much simpler than the exact one, and admits the form (2.9) as an 
exact solution, with thc same s(f) as in (2.10), but with r = 1+A, which is the known 
7 exponent of the n / s  bchaviour of EVD class I models. The same approximation 
gives 

G( ' ) ( z , t )  = zG(l)(z. t ) G ( A + l ) ( z , t )  (4.5) 
in the additive case. We obtain the same features as previously: expression (2.9) or 
(3.5) is an exact solution which leads again to T = 1 + A ,  which questions the validity 
of the approximation .~ in this case [SI. 
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4.3. Lnrge n results 

Furthermore, if in equation (2.2) or (3.1) one looks at z very close to the singularity, 
ie. G('")(z,t) - m, the constant terms (C(w)(O,t) or G(0,t))  may be neglected, 
and a limiting solution may be round for both models. We recover the exponent 
T = A, which has becn found to be valid for n >> s. This last p in t  is easy to 
understand as, near the singularity, the z value in the discrete Laplace transform 
('.'", 0 ylmurr; .ill" wc all. ,nu> Gnolr,lrrl,lg LUG lllgll I' "LII"S3 U, U,= " W L I I Y U L I U L I .  

In fact, our analysis, which consists in finding an approximate solution of the exact 
equation, gives good prcdictions in the intermediate n range (less or around s); the 
exact size of this range is to be determined by numerical simulations. Concerning the 
r* exponent, the results are shown in figure 5 together with the numerical results, in 
the following part. 

,I rn\ :" " " A  ...- ̂ _" .I... ^ -".~-.:":"" .L" &:"I. ..",..̂  ̂̂F .I... A:".-:L...:-" 

5. Numerical results 

5.1. The simulation ntethod 

We use a Monte-Carlo type simulation for the agglomeration phenomenon, starting 
fromm .U monomers. .At each step of the  simc!ation, two c!usters are. random!y chosen, 
proportionally to the total mass of their mass sector: P(i) o( i N ( i ) .  Then, the two 
clusters aggregate with a probability proportional to k'(i,j)/ij. The time is then 
implemented by a constant quantity At .  

This technique is similar, but different and faster, to Meakin's one [20], who 
chose the clusters to be proportional to their multiplicity in their mass sector and 
aggregated them proportionally to K(i, j ) /KmaX. Particularly, in the case of gel, it 
avoids any critical slow-down and goes beyond the theoretical gelling point [ll]. 

5.2. Universalip 
We start the evolution with lo5 monomers and characterize the degree of evolution 
by the mean size of the agglomerates in the sample, S* = 2 / M  = g2. 

5.2.1. The first resulr of the simulation is that, for S *  < 20 (the heaviest cluster 
has a mass nmaX 2 loo), it is quite impossible to see any difference between the 
multiplicative and additive models for -1 < X < 1. We present in figure 3 the 
multiplicity distribution for the WO modcls, when s E 10. The X exponents for the 
two models are -1 Cor figure 3(a )  and 0.5 for figure 3(b). 

5.2.2. In contrast, figure 4 shows that for X > 1, there is no universality at all, the gel 
occurs much more rapidly in the additive case, and the system is much more sensitive 
to initial conditions than in the multiplicative one. In order to exhibit these two 
pints, we start from initial conditions consisting of l o 4  monomers plus one polymer 
of size 100, with X = 1.5. After approximately lo4 iterations, the statistical sample 
shows somewhat diffcrcnt bchaviour for the two models. 

Now, we can define an aspect ratio as 

A = ~ I L ' / , I I L  (5.1) 

where m is the mass of thc hcavicst cluster in the sample and m' the mass of the 
previous one, and onc can compare this quantity for the two models at the end of 
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( a )  

D 
I 

I 10 I 
n 

lwoo 

1 1  I i n  I 
II 

Flgure 3. (a) Number of aggregales of size n as a function of n lor nmaX = 100 
(A = -1): open squares, mulliplicalive model; lull circles, additive model. (b)  Number 
of aggregates of size n as a funclion of n lor nm.. = 100 (A = 0.5): open squares, 
mulliplicalive model; Cull circles. sdditive model. 

t 
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n 

Figure 4 
(A = 1.5): open squares, multiplicative model; full circles, additive model. 

Number of aggregates of size n as a function of n after 10’ iterations 
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the simulation. In the multiplicative case we find A = 0.16 which means that the 
statistical sample is around its gelling point [ll], in the additive case this quantity is 
A = 6 x showing that the system is already in a gel phase and that there is a 
very heavy isolated cluster in the sample (m = 1175). 

5.3. The r* erponenr 

N(n) with the self-similar shape N ( n ,  t )  a n-r.'e-nls. This fit is constructed as a 
xz linear minimization of the logarithm of the data, weighted with their multiplicity. 
In other words, we use a xz defined as 

Y GabeNini and J-L Meunier 

In order to determine the T.  eq@eg numerica!!y, wc fit the m.!tip!idQ' n$tr;b.tiQE 

. . -, 
Nth. (i) = ci? e-" 

We fit the theoretical parameters using either the whole sample of lo4 particles, 
or i,,, zz s*/lO and i,,,,, Y SI depending on the value of A. In fact, when s* is less 
or equal than 10, the whole data range can be described properly by the self-similar 
solution, which is not the case when S' is greater than, say, 20. 

As can be seen in figure 5, where we have plotted the r* exponent for both models 
as a function of A,  togetherwith their respective theoretical curves, our numerical 
simulation corroboratcs the theoretical approach of the problem quite well. 

3 I 

2 

1 
5* 

0 

-2  

A 
Figure S. llic T' universal exponent as a function of X for the additive and multiplicative 
model. Numerical results: open squares. multiplicative model; full circles, additive model. 

The error bars, which are not shown in figure 5 for the sake of legibility, are 
of the size of the diffcrence between the numerical p in t s  and the theoretical curve. 
Nowi in order to tcst the stability in time of T.: we follow a l o 5  particle sample 
for both models up to S* cz 100 for A = 0.5. The r' value remains stable in this 
range as can be s e n  in figure 6, where it is given as a function of nmax for our two 
models. Fbr higher values of S' our fit has strong statistical errors due to the natural 
fluctuations in the numcrical calculation, and cannot be trusted. The fact that the 
EVD exponent can only be reached for very high values of s' is well known [12-141, 
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I1 m m  

Figure 6. T *  sponenl as a function of the maximal mas in Ihe sample, campared with 
the ND prcdiclians. The rcsulls are wlculalrd loor A = 0.5: open quares, mullipliLalive 
model; full circles, addilive modcl. 

and has been observed in the experimental results of Broide and a h e n  [U] which 
worked with lo7 polystyrene spheres. 

One can also note that the results we obtain are consistent with those of Kang et 
al [12]; the 7 exponcnt they find for X = 0.8 in the multiplicative case is the Same 
as for X = 0.75 in the additive one: a value of 1.3 (intermediate times) for both 
models. This result can now be well understood within our scheme, as we can guess 
that, in their intermediate range, the universality we found is supposed to hold. As a 
matter of fact, we are in good agreement with the rest of their results. 

6. Conclusion 

In this paper, we have shown the existence of a new universal exponent, T ' ,  for the 
aggregation phenomenon at intermediate times, which can be observed early in the 
development of thc process and can be measured without ambiguity. This would 
permit early analyses of the experimental events and thus the prediction of its time 
evolution. In particular, the possibility of the gelling process coud be determined 
rapidly by a measuremcnt of the r* exponent. 

\This analysis is valid over a large range of the homogeneity degree of the model: 
-1 3 X < 1. In particular, we recover the bell-shaped lype of distribution intro- 
duced'by Kolb [7] for X negative. The numerical calculations follow the theoretical 
predictions remarkably wcll. 

With kspect to the positive values of A, our result lies between the T and T' 

values found by EVD for n / s  -, 0 and n / s  -, M and is valid in a wide range of the 
phase space, say s/10 < 71 < s. In the gelling region, the additive model loses its 
universality, exhibits a rapid gel and is very sensitive to the initial conditions. 

One can also approximate the r* value for the multiplicative model in the gelling 
case (TI  

Note also that our analysis follows the same direction as the Taylor and Sorensen 
[21] one, but the fact tha t  we use the discrete Smoluchowski equation instead of the 
continous one means that  we avoid any divergence problems near n fs -+ 0. On the 
other hand, we have shown that the moments of the distribution which are needed 

, 
', 

'?\ 

(1 +- 2X)/1?) and summarize the whole X range in table 2. 
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p b l e  2. Values of the various universal exponents as a function of X 

X < O  O < X < I  1 < X < Z  

r .  - 2 X  '5 $ A  2 ( 1  + 2 X ) / 2  
2 ] / ( I -  A)  l / ( l - A )  - 
2' - - 2 2/ (1  - A) 
0 2  2 2 ( 3  + X) /Z  

in order to construct the asymptotic solution are related the X parami :I: for 
negative values of X the first ihrce moments, g o ,  g, and g2 can be used in the 
calculation of the self-similar solution; for X between 0 and 1, in order to prevent 
any divergence of the inverse Laplace transfore, we used gl ,  g2 and g3, and in the 
gelling case, for the same reason, g2, g3 and g4 are the building tools of the theory. 
This is why we do not completely understand the arguments of the above authors 
who wed essentially the zeroth-order moment to solve the problem for any X 2 1. 

In this paper we have not focused our attention on the attractor character of 
the solution, which, in any case, has becn numerically verified. We postpone this 
discussion to a forthcoming paper together with the discussion of the aggregation 
phenomenon in the prescnce of an incoming constant flux of monomers. 
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Appendix 

i d 7 Pnn,in,,nr,. dnn',?",;,,,,. dnfi";rinn 
-1 .... ..-111 ".,.,...,... UC,.....'",. 

In order to intraducc the continuous dcrivatives, let us recall the Cauchy formula for 
the calculation of the nth derivative of an analytical function: 

In this formula, thc integration has to be done along a contour surrounding z. The 
continuous derivative of an analytical function can be defined by the same formula 
with a non-integer 71: 

However, in this case the function to be integrated has a cut in the z-plane and 
the Cauchy formula is no longer valid unlcss the integration path crosses the cut 
sufficiently far away so the integrand is zero. In other words, this formula is valid for 
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such functions which have the following behaviour in at least the left or right Complex 
half-plane: 

z ' f ( r )  - 0 when IzI -+ 00. ('4.3) 

This is crucial in this work. & the Laplace transform of the multiplicity is analytical 
in the left half-plane, we will define the cut of (z' - t ) O + l  on the right-hand side of 
the complex plane, i.e. the argument 0 of z will be defined from 0 to 27r. Now, using 
equation (A.2) and taking the discontinuity of the function, one obtains the fOllOWing 
formula: 

This defines the continuous derivative for functions, the behaviour of which is given 
by @3). 

A2 Some useful deriimiiws 

We list here some useful examples of continuous derivatives: 

and 

In this last formula, one can let c go to 00, which gives the derivative of a power of 
I: 

Notice that O m ( - z  + e)" does not exist if 01 is less than n, as I or I"-'' does 
not tend to zero as I goes to -00. If a is greater than n, its derivative clan be 
calculated and gives zcro. Notice also that Y there is a convergence problem near 
I = 0 in formula (A.4), it should be taken as a principal value distribution. Finally, 
the continuous derivative deiinirion gives back tine usuai derivative, when a is an 
integer, when applied to a well behaving [unction (decreasing when I - -co). 
References 

Von Smoluchowski M 1917 2. P l y  Clion. 'B !29 
Drake R L 1972 7bpics hi Cimeni Aerosol Rceorcch voI 3, ed G M Hidy and I R Brock (New York 

Golovin A M 1963 la: ilkad. Nuirk SSSR Sm GmJk 5 783: 1963 EdL Acad Sd. USSR> Ceophys 

ZiR R M, Emst M 1.1 alid Hcndrilis E M 1983 1. I'lt,~~. A: Maih GetL 16 2293 
tiff R M, Ems1 M I 1  and Hmdliks E M 1984 1. Colloid Inrerfacc Sci 97 266 

Perpaman) 

Set 5 482 



3700 

161 Hendrib E M 1984 J Plys. A: Morlr GOI. 17 U99 
Spouge J L 1985 1. Phys. A: Mali. CC!L 18 3063 

[7l Kolb M 1984 Phys. RCL: Lru. 53 1653 
[SI van Dongen P G J and Ernst M H 1985 Phys. Rev. k i f  54 1396 
191 Emst M H 1986 FrrcloLr bt Physics ed L Pietronero and E l b s l t i  (Amsterdam: North-Holland) 

[lo] van Dongen P G J and Emst M H 1988 J .  Sraf Phys SO 295 and references quoted herein 
Ill] Gabellini Y and Meunier J-L Preprinr Nice NTH90/19 
1121 Kane K. Redner S. Meakin P and Lrvras F 1986 Phm Rm A 33 1171 

Y Gubcllini and J-L Meirnier 

P 289 

&3j Ma& J E 1987 Phys. Reu A 36 341; 
1141 Helnesen G. Skiclmm A T: Mors P M. Bote1 R and Julien R 1988 Phvs h. Lert 61 1736 
il5j Broide M L an i  Cahcn R J 1990 Phys. Rea k r r .  64 2026 
1161 Kogut J and Wilson K 1973 Phys. Rep. C 12 
117 Niemeijer T and Van Leuvcn J 1975 J?iare Pmrsirimu mid Cridcol Phenomena MI VI 64 (New 

1181 Guelfand I M and Chilov G E 1965 Les Disniburionr (Pans: Dunod) 
1191 Dstloli G, Richetla M and 'Rwe A 1990 N w v o  SogsiOrore S/6 19 
[ZO] Meakin P On Growrh and Fonn cd H E Slanlqr and N Ostmwsky (Dardrechl: Maninus NijhaR) 

Family F and Landau D P 1984 Kiirerio oJAgqr.egmio,l mid Gelorion (Amscenlam: North-Holland) 
Pietmnero L and Toratti E 1986 PramLr iii Phssks (Amslerdam: North-Holland) 
Vicsek T 1989 Iiactal Growrh Phaiorne!ia (Singapore: World Scienlific) 
Bylor T W and Soreiisen C M 1987 Ply. Reu A 36 5415 

York Academic) p 2026 

p I11 

1211 


